
Kan and Grothendieck Commute Together1

Jade Master # Ñ2

Glasgow Lab for AI Verification, Scotland3

Abstract4

This early idea abstract starts with a motivating question: how can a free category be computed5

on a decomposition of graphs? As free categories may represent either languages on abstract6

machines (in the internal case) or a class of computational problems called the algebraic path7

problem (in the enriched case) the answer to our motivating question promises to give insight into8

the compositionality of a wide class of problems. We answer our question through generalization:9

there is a square of functors expressing the commutation of generalized Grothendieck constructions10

and left Kan extensions which specializes to the case of free categories on decompositions of graphs.11

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity problems12

Keywords and phrases Fibrations, Labelled Transition Systems, Operational Semantics13

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2314

Funding Jade Master : Funded by the Advanced Research + Invention Agency (ARIA)15

0.1 Decompositions and Generalizing Grothendieck16

The “category theorist’s graph” i.e. a pair of functions s, t : E → V may be known to17

automata theorists as a labelled transition system. These transition systems are often18

modular; for example, in Figure 1, there is a Petri net from the 2021 Model Checking Contest19

which may be unfolded into a labelled transition system G representing its behavior [4]. In20

this case, we seek general categorical methods to reason about the behavior of such systems21

by leveraging their inherent modularity.22

We take a deceptively simple approach to graph decompositions: they are just graph23

morphisms. The idea is that for each y ∈ Y , the preimage g−1(y) is the “bag” over y and for24

each x ∈ X, the preimage f−1(x) is the “adhesion” over the edge x. In the case of Figure 1,25

the bags are the clients or servers and the adhesions are the edges connecting them. Graph26

decompositions may be made complicated again, as shown below:27

E V X Y

X Y Spans Sets

f

s

t
g ∼= α

u

v

β

u

v

src

tgt

28

This equivalence is reminiscient of the Grothendieck construction; the forward direction turns29

a graph morphism into its inverse image and the backwards direction takes dependent pairs.30

Indeed, it is a Grothendieck construction obtained by internalizing a category T into the31

category ISet of indexed sets i.e. large functions X → Sets. A functor T → ISet is interpreted32

as a decomposition of models of T . There is always a Grothendieck construction for such33

functors:34

▶ Theorem 1. For every small category T , there is an equivalence of categories35 ∫
T

: [T, ISet] ∼= [T, Set→]36

To see the graph Grothendieck construction as a special case, we must construct equivalence37

of categories [ThGr, ISet] ∼= Graph/SpanGr where ThGr is the “walking graph”.38

© Jade Master;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jade@glaive-research.org
http://jademaster.xyz
https://orcid.org/0000-0003-1970-6030
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Kan and Grothendieck Commute Together

0.2 Free Categories and Compositionality Squares39

The free category on a transition system, such as the one G derived from Figure 1, has40

morphisms as all possible sequences of communications that may occur in the network (in41

other words F (G)(x, y) is the language of G which starts in x and ends in y). Because G42

is actually a decomposition of graphs, D : S → SpanGr, we can find its language in two43

ways. The first way F→(
∫

ThGr(G)) glues the decomposition together and then takes its free44

category. The second way, does this in the reverse order
∫

ThCat(Find((G))); first the free45

category is found as a graph decomposition and then it is glued together into a category.46

These two ways of finding the transition system’s language are represented as the two paths47

in the square below:48
Graph/SpanGr Graph→

Cat/SpanCat Cat→

Find

∫
ThGr

∼= F→∫
ThCat

49

The first way, F→(
∫

ThGr(G)) does not leverage the compositional structure and just finds the50

language all at once. The second way,
∫

ThCat(Find((G))) finds the language more cleverly, by51

first finding the language of the shape graph S and then casting the results on the bags and52

adhesions. The square commuting up to natural isomorphism proves the correctness of the53

clever way because it means that it agrees with the naive approach. It is an open question54

whether the bottom path of this square may inform an algorithm for finding the language of55

the graph decomposition in a compositional way. Because taking free categories is a left Kan56

extension along a morphism of theories ThGr→ ThCat, we may see the above square as a57

special case of the one below.58

[T, ISet] [T, Set→]

[T ′, ISet] [T ′, Set→]

Lanf (−)

∫
T

∼= Lanf (−)∫
T ′

59

This suggests that more generally, the free model of an algebraic theory generated by another,60

has a “compositional algorithm” given by taking the clever path of the square. In particular,61

there is a theory whose models are Petri nets and where the left Kan extension turns a62

Petri net into the operational semantics given in [3] making Petri nets another potential63

application for this framework. Another open question is how to generalize the square for64

free categories to enriched categories. As argued in [1], [2], the answer to this question may65

give compositional techniques for finding solutions to algebraic path problems.66

Figure 1 A Petri net represent the interaction of clients and servers from the 2021 MCC

J. Master 23:3

References67

1 Jade Master. The open algebraic path problem. In 9th Conference on Algebra and Coalgebra68

in Computer Science, page 1, 2021.69

2 Jade Master. How to compose shortest paths. In Structure Meets Power Workshop (Contributed70

Talks), page 15, 2022.71

3 José Meseguer and Ugo Montanari. Petri nets are monoids. Information and Computation,72

88(2):105–155, 1990.73

4 Fabrice Kordon Tra My Nguyen. Model: Serversandclients. Model Checking Contest 2021.74

Available at https://mcc.lip6.fr/2025/pdf/ServersAndClients-form.pdf.75

A Omitted Definitions and Proof Sketches76

▶ Definition 2. Let Sets be the large set of all small sets X, Y, Z, . . . and let Spans be the77

large set of all pairs of functions X
a←− A

b−→ Y . Let src and tgt be the large functions sending78

each span to its source and target sets respectively. The there is a graph SpanGr defined by79

Spans Sets
src

tgt
80

▶ Definition 3. An indexed set is a large function X → Sets and a morphism of indexed sets81

is a function f between the base sets along with an indexed αx : A(x)→ B(f(x)) as shown82

below.83

X

Sets

Y

f

A

B

α84

This defines a category ISet of indexed sets and there morphisms.85

▶ Proposition 4. There is an equivalence of categories Graph→ ∼= Graph/SpanGr given by86

E V X Y

X Y Spans Sets

f

s

t
g 7→ f−1

u

v

g−1

u

v

src

tgt

87

Σα Σβ X Y

X Y Spans Sets

π

s

t

π ← [α

u

v

β

u

v

src

tgt

88

where Σ sends an indexed set to its set of dependent pairs and π is the first projection of89

these pairs.90

The above theorem is a special case of the next one.91

▶ Theorem 5. For every small category T , there is an equivalence of categories92 ∫
T

: [T, ISet] ∼= [T, Set→]93

CVIT 2016

https://mcc.lip6.fr/2025/pdf/ServersAndClients-form.pdf

23:4 Kan and Grothendieck Commute Together

Proof. To construct this equivalence, first define an equivalence ISet ∼= Set→. Going left to94

right, we send an indexed set X
A−→ Sets to the dependent pair and projection ΣA

π−→ X.95

Going right to left we send a function to its preimage mapping. Applying the 2-functor [T,−] :96

Cat→ Cat preserves this equivalence because every 2-functor preserves equivalences. ◀97

▶ Proposition 6. There is an equivalence98

Graph/SpanGr
∼= [ThGr, ISet]99

Proof. A functor ThGr → ISet has two indexed sets e : E → Sets and v : V → Sets along100

with indexed morphisms s : e ⇒ v and t : e ⇒ v. E, V and the base components of s101

and t assemble into an ordinary graph G which will be the domain of a graph morphism102

G→ SpanGr. The actual mappings of this graph morphism are given by e and v where the103

extra spans necessary in the edge component are coming from the indexed portions of s and104

t. ◀105

▶ Proposition 7. There is an equivalence106

Cat/SpanCat
∼= [ThCat, ISet]107

Proof. This equivalence will be very similar to the previous one, as the theory of categories108

is just the theory of graphs with additional axioms for composition and identities satisfying109

the usual axioms. However there is some subtlety as SpanCat is best thought of as a double110

category and the functors into it will be lax since composition of spans by pullback is only111

defined up to isomorphism and not every element of the pullback will specified by a functor112

ThCat→ Set. ◀113

▶ Proposition 8. There is an adjunction114

Graph/SpanGr Cat/Span⊥115

Proof. It is well known that there is an adjunction F : Graph↔ Cat : U whose right adjoint116

is forgetful and whose left adjoint sends a graph G to the category whose morphisms are117

given by
∑

n≥0 Gn where
∑

indicates coproduct and Gn indicates the n-fold pullback of118

the graph with itself. This adjunction provides an equivalence between graph morphisms119

G→ U(C) and functors F (G)→ C. We may use this adjunction to form a left adjoint Find120

on Graph/SpanGr by sending a morphism G→ SpanGr to its “mate” FG→ SpanCat with121

the understanding that SpanGr
∼= U(SpanCat). ◀122

▶ Proposition 9. There is an adjunction123

Graph→ Cat→⊥124

Proof. The left adjoint F→ : Graph→ → Cat→ is defined by sending a morphism H
f−→ G to125

the functor F (H) F (f)−−−→ F (G). ◀126

▶ Theorem 10. The square of functors below commutes up to natural isomorphism.127

J. Master 23:5

[T, ISet] [T, Set→]

[T ′, ISet] [T ′, Set→]

Lanf (−)

∫
T

∼= Lanf (−)∫
T ′

128

Proof. Because ISet has all small colimits, we may always form the left Kan extension129

T ′

ISet

T

Lanf (M)

f

M

130

when T and T ′ are small categories. Then we may compose it with the equivalence with the131

above equivalence to get132

T ′

ISet Set→

T

Lanf (M) ∫
f

M

133

alternatively, we may take the Kan extension134

T ′

Set→

T

Lanf (
∫

◦M)

f

M

135

we wish to know if there is a natural isomorphism Lanf (
∫
◦M) ∼=

∫
◦Lanf M . Indeed there136

always will be an isomorphism because Kan extensions are preserved by left adjoints and in137

particular equivalences. ◀138

CVIT 2016

	0.1 Decompositions and Generalizing Grothendieck
	0.2 Free Categories and Compositionality Squares
	A Omitted Definitions and Proof Sketches

